Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at , a moderately lensed galaxy ( ) with an intrinsic UV magnitude of . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z⊙ < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M⊙. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.more » « lessFree, publicly-accessible full text available August 4, 2026
-
ABSTRACT Recent observations from the EIGER JWST program have measured for the first time the quasar–galaxy cross-correlation function at $$z\approx 6$$. The autocorrelation function of faint $$z\approx 6$$ quasars was also recently estimated. These measurements provide key insights into the properties of quasars and galaxies at high redshift and their relation with the host dark matter haloes. In this work, we interpret these data building upon an empirical quasar population model that has been applied successfully to quasar clustering and demographic measurements at $$z\approx 2\!-\!4$$. We use a new, large-volume N-body simulation with more than a trillion particles, FLAMINGO-10k, to model quasars and galaxies simultaneously. We successfully reproduce observations of $$z\approx 6$$ quasars and galaxies (i.e. their clustering properties and luminosity functions), and infer key quantities such as their luminosity–halo mass relation, the mass function of their host haloes, and their duty cycle/occupation fraction. Our key findings are (i) quasars reside on average in $$\approx 10^{12.5}\, {\rm M}_{\odot }$$ haloes (corresponding to $$\approx 5\sigma$$ fluctuations in the initial conditions of the linear density field), but the distribution of host halo masses is quite broad; (ii) the duty cycle of (UV-bright) quasar activity is relatively low ($$\approx 1~{{\ \rm per\ cent}}$$); (iii) galaxies (that are bright in [O iii]) live in much smaller haloes ($$\approx 10^{10.9}\, {\rm M}_{\odot }$$) and have a larger duty cycle (occupation fraction) of $$\approx 13~{{\ \rm per\ cent}}$$. Finally, we focus on the inferred properties of quasars and present a homogeneous analysis of their evolution with redshift. The picture that emerges reveals a strong evolution of the host halo mass and duty cycle of quasars at $$z\approx 2\!-\!6$$, and calls for new investigations of the role of quasar activity across cosmic time.more » « less
-
Abstract Deep Very Large Telescope/MUSE optical integral field spectroscopy has recently revealed an abundant population of ultra-faint galaxies (MUV≈ −15; 0.01L⋆) atz= 2.9−6.7 due to their strong Lyαemission with no detectable continuum. The implied Lyαequivalent widths can be in excess of 100–200 Å, challenging existing models of normal star formation and indicating extremely young ages, small stellar masses, and a very low amount of metal enrichment. We use JWST/NIRSpec’s microshutter array to follow up 45 of these galaxies (11 hr in G235M/F170LP and 7 hr in G395M/F290LP), as well as 45 lower-equivalent width Lyαemitters. Our spectroscopy covers the range 1.7−5.1 micron in order to target strong optical emission lines: Hα, [Oiii], Hβ, and [N II]. Individual measurements as well as stacks reveal line ratios consistent with a metal-poor nature (2%−40%Z⊙, depending on the calibration). The galaxies with the highest equivalent widths of Lyα, in excess of 90 Å, have lower [N II]/Hα(1.9σ) and [Oiii]/Hβ(2.2σ) ratios than those with lower equivalent widths, implying lower gas-phase metallicities at a combined significance of 2.4σ. This implies a selection based on Lyαequivalent width is an efficient technique for identifying younger, less chemically enriched systems.more » « less
-
Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.more » « less
An official website of the United States government

Full Text Available